
JudoShiai Lua

JudoShiai Lua is intended to be used with the SVG functionality. Lua is a
powerful, efficient, lightweight, embeddable scripting language. It supports
procedural programming, object-oriented programming, functional
programming, data-driven programming, and data description. Learn Lua here:
https://www.lua.org/

Introduction
There are many ways to express the same thing, like competitor’s points. For
example, if a competitor has lost you may not want to display “0” but text
“LOSS”. Or if there is hikiwake you may want to show text “DRAW”. JudoShiai is
quite flexible, but there are limits to what can be done. JudoShiai Lua
introduces some extra help.

You may want to have reports not provided by the JudoShiai at the moment.
You can create Lua scripts to create SVG pages with the required data.

Example: You want to show the text “LOSS” if the competitor has lost. Now you
can do that by writing to SVG file text

%m23p1-1==0'LOSS'

Here

%m Match related text

23 Match number

p Points

1 1 = white, 2 = blue competitor

-1==0’LOSS’ Print LOSS if points are 0

What if that is not enough? How to print DRAW in case of hikiwake and still
print LOSS? Perhaps you want to have text IPPON flashing red? That is possible
by using Lua. The SVG text above is replaced by %, a Lua expression, and
match identification:

%[require 'points']m23

Lua code in the example is

require 'points'

m23 sets global Lua variables to values related to match #23.

You have a file points.lua that can write anything on the SVG sheet.

JudoShiai Lua
There are many ways to use Lua scripts.

Use code in SVG files. Example:

Hello %[JS.writesvg('World!')]

SVG file will have text Hello World! It is unpractical to write long pieces of code
to the SVG sheet. It is better to have Lua code in a separate file. Example:

Hello %[require 'myhello']

File myhello.lua has a line

JS.writesvg('World!')

Again you will display text Hello World! File must be in one of the directories

HOMEDIR/lualib
/home/myname/lualib (Linux)
C:\Users\myname\lualib (Windows)

HOMEDIR/lualib/lib
 (for example /home/myname/lualib/lib or C:\Users\myname\lualib\lib)

JudoShiai/svg-lua
 (for example /usr/lib/judoshiai/svg-lua or C:\Program Files\JudoShiai\svg-lua)

JudoShiai/svg-lua/lib

 (for example /usr/lib/judoshiai/svg-lua/lib or
 C:\Program Files\JudoShiai\svg-lua/lib)

You can have Lua file anywhere, but then you must give the whole path:

Hello %[@/PATH/TO/myhello.lua]

Note: @-character indicates that rest of the text is a path to a file. Also on
Windows you must use forward slashes.

Global variables defined by JudoShiai
There are some predefined read-only variables that you can use after their
values are set. To set match related variables call your Lua function from an
SVG page like this:

%[require 'handle_match']m23

m23 sets the following global predefined read-only variables for the match #23
before running Lua file handle_match:

JS_category Index of the category. This has not much use except in
SQL command.

JS_number Number of the match.

JS_comp_1 Internal index of the white competitor.

JS_comp_2 Blue competitor. Indexes have not much use except in SQL
commands.

JS_score_1 White competitor’s scores (ippons, waza-aris, shidos)

JS_score_2 Scores for the blue competitor.

JS_points_1 Value of the win for the white (ippon = 10 points).

JS_points_2 Blue competitor’s winning points.

JS_match_time Match time in seconds.

JS_comment Match is forced to be next or preparing or delayed.

JS_tatami Default contest area for the match.

JS_group Group number category belongs to.

JS_flags Misc. flags.

JS_forcedtatami Contest area where fight has been moved manually.

JS_forcednumber Number of the fight, if moved manually.

JS_date Date information of the match as seconds since the
Epoch.

JS_legend Legend for the match.

JS_roundnum Round number of the match (first round, repechage, etc.).

To set competitor related variables call your Lua function like this:

%[require 'print_name']m23-1

This will first set white competitor’s name and other data to global variables
and then run your Lua file. The following competitor’s variables are set:

JS_first First name.

JS_last Last name.

JS_club Club.

JS_country Country.

JS_comment Comment text.

JS_compid Competitor’s ID.

JS_coachid Competitor’s coach ID.

JS_compix Internal index. Used with SQL commands.

JS_birthyear Year of birth.

JS_grade Grade as an integer. Default: 0 = unknown, 1 = 6. kyu, 2

= 5. kyu, … 7 = 1. dan, 8 = 2. dan, …

JS_regcategory Registered category.

JS_category Real category.

JS_weight Weight in grams.

JS_seeding Seeding 1-8.

JS_clubseeding Clubseeding.

JS_gender Gender. Male = 1, female = 2.

For the blue competitor the Lua call would be:

%[require 'print_name']m23-2

Lua code is the one surrounded by brackets. You can have any name and
arguments.

Other global read-only variables:

InstallationDir Installation directory of the JudoShiai software.

LuaScriptDir Directory where the script is run.

Functions defined by JudoShiai
There are useful functions that start with JS.:

 JS.sqlrows(sqlcmd)
 Run SQL command.
 Parameters
 sqlrow String. Sql command to perform.
 Returns
 Table of tables.

 JS.writesvg(str)
 Writes SVG code on canvas.
 Parameters
 str String. SVG code to write to the document.
 Returns
 Nothing.

 JS.getdata(index)
 Get data of competitor or category using index.
 Parameters
 index Integer. Index of the competitor or category.
 Returns
 Table of data.

 JS.getmatchbytatami(tatami, number)
 Get data about match.
 Parameters
 tatami Integer. Number of the tatami (1...)
 number Integer. Number of the match (1...)
 Returns
 Table of data.

 JS.getroundname(round)
 Get round name of a match.
 Parameters
 round Integer. Round code from database or getmatchbytatami().
 Returns
 String that describes the round.

 JS.setpages(numpages)
 Set total number of pages.
 Parameters
 numpages Integer. Number of pages in the SVG document.
 Returns
 Nothing.

 JS.getpage()
 Get the current page number. First page is 1.
 Parameters
 None
 Returns
 Current page number (integer) starting from 1.

 JS.flag2base64(country)
 Writes flag of a country as base64 string to SVG document. Data is from
 JudoShiai/etc/flags-ioc.
 Parameters
 country String. IOC abbreviation of the country.
 Returns
 Nothing.

 JS.error(message)
 Opens a window and shows error text.
 Parameters
 message String. Error text.
 Returns
 Nothing.

 JS.print(text)
 Prints texts to an open window.
 Parameters
 text String. Text to print.
 Returns
 Nothing.

 JS.getcatdefs()
 Get defined category names.
 Parameters
 None.
 Returns
 Table of categories for men and women.
 Example:
 m, w = JS.getcatdefs()
 returns table m for men:
 {
 [1] = "MenU18",
 [2] = "MenU21",
 [3] = "M",
 numentries = 3,
 }
 and w for women:

 {
 [1] = "WomenU18",
 [2] = "WomenU21",
 [3] = "W",
 numentries = 3,
 }
 Tables have entries 'numentries' that tell the lengths of the tables.

 JS.getsvgbyid(filename, id)
 Returns group whose id is id.
 Parameters
 filename String. Path to the SVG file
 id String. Id of the <g id="xxx">...</g>
 Returns
 String that contains the group data.
 Example
 svg = JS.getsvgbyid(InstallationDir .. '/svg-lua/lib/mypage.svg',
 'header')

 JS.getsvggeometry(filename, id)
 Returns position and size of a svg element.
 Parameters
 filename String. Path to the SVG file
 id String. Id of the <g id="xxx">...</g>
 Returns
 X and y coordinates of the svg element.
 Width and height of the svg element.
 Example
 local x, y, w, h = JS.getsvggeometry(InstallationDir ..
 '/svg-lua/lib/mypage.svg', 'header')

 JS.askoption(title, options)
 Asks user to select one of the options. NOTE: Opened window is modal.
 While asking all the other functionality is blocked.
 Please make your selection without delay.
 Parameters
 title String. Question to ask.
 options String. Options to select from. Options are
 separated by slashes.
 Returns
 Number of the selected option starting from 1.
 Example
 local color = JS.askoption('Select a color', 'Red/Green/Blue')
 Color will be 1 for Red, 2 for Green, and 3 for Blue.

Example
In the beginning we had a problem how to print competitor’s points.
Requirements:

• Write nothing if the match has not been fought.

• If match ends up hikiwake (draw) write DRAW.

• Write LOSS if competitor has no points.

• We want to write 5 for waza-ari win. Database marks that with number 7.

• Otherwise, write the database points value.

We have to modify the SVG file. Write text %[require 'pts'; pts(1)]m<n> if you want
to print the points of the white competitor and %[require 'pts'; pts(2)]m<n> for the
blue competitor (<n> is the match number).

Make a file pts.lua. Start with function pts:

function pts(who) -- line 1
 if JS_points_1 > 0 or JS_points_2 > 0 then -- line 2
 if JS_points_1 == JS_points_2 then -- line 3
 JS.writesvg('DRAW') -- line 4
 else -- line 5
 if who == 1 then -- line 6
 print_points(JS_points_1) -- line 7
 else -- line 8
 print_points(JS_points_2) -- line 9
 end
 end
 end
end

Explanation line by line:

1. Define function pts. It has one argument, who. If who is 1 it means white
competitor, 2 means blue competitor.

2. Check if the match has been fought. Either white or blue must have points.
JS_points_1 > 0 is true if white has more points than 0. Or is true if blue or
white have points.

3. If previous test was true check if the points are the same. This means
hikiwake or draw.

4. This line is executed if the points are the same. Write DRAW on the SVG
page.

6. Otherwise, check if who is 1.

7. If who is 1 (= white) call function print_points with the white points as its
argument.

9. If who was not white call function print_points with the blue points as its
argument.

Finally implement function print_points:

function print_points(p) -- line 1
 if p == 0 then -- line 2
 JS.writesvg('LOSS') -- line 3
 elseif p == 7 then -- line 4
 JS.writesvg('5') -- line 5
 elseif p == 11 then -- line 6
 JS.writesvg('DRAW') -- line 7
 else -- line 8
 JS.writesvg(tostring(p)) -- line 9

 end
end

Explanation:

1. Function print_pts has one argument p, the points to print.

2, 3. If p is 0 print LOSS.

4, 5. Otherwise, if p is 7 print 5. In this case a national rule says that waza-ari
scores 5 points.

6, 7. Otherwise, if p is 11 print DRAW. In principle draw was detected in the
previous function, but let’s have it here too for completion.

9. Otherwise, print points as is.

Points in the database can have the following values:

1: Win by shido

2: Win in golden score when that always scores 1 point

3: Win by koka (not used)

5: Win by yuko (not used)

7: Win by waza-ari

10: Win by ippon

11: Hikiwake

Real points and how they are shown depend on the national rules.

SVG + Lua scripts
There are two ways to run Lua scripts:

• Embed code to SVG sheets. Lua code is embedded to text by using
format
%[lua_code_here]

• Run Lua file. There will be a default SVG file where all the printing goes.
Note: The default file has no Inkscape specific definitions. When creating
SVG files to include them save them as plain SVG.

Lua embedded in SVG sheets
You can create and print pages generated from SVG files that contain
embedded Lua code. Usually Lua code is divided in the two parts:

• Simple code in the SVG file, that calls the more complicated functions.

• Code in a Lua file that contains most of the code.

JudoShiai is delivered with example code in directory svg-lua.

There are two ways to use embedded Lua code:

• Lua in the bracket sheets to use for example non-standard name formats.

• Separate SVG file that can display for example statistics. In JudoShiai
select Tournament → SQL Dialog → Run Script. Select an SVG file to show.

Whenever JudoShiai finds text like %[lua code] the Lua code will be executed.
Lua code writes whatever you like, and the output will replace the original %
[…].

However, this way you cannot draw graphics since the output from the Lua
code will be surrounded by <text...> and </text> tags. Solution is to have one
(and only one) command that is called in the end of the SVG file. Text has an
exclamation mark between the “%” and “[“:

%![lua code to the end]

Lua file with the default SVG

You can run a Lua script by selecting Results → Run Script. Everything you
write goes between main <g> and </g> tags. Next example code draws a
50x60 mm rectangle at position 10, 10:

JS.writesvg("<rect x='10' y='10' height='50' width='60' />")

Normally there are many more parameters, like colors, line style, etc. However,
it is not necessary to know the SVG format. You can draw a file and name the
objects and import the objects one by one. In the following example we assume
you have your Lua code in JudoShiai/svg-lua/mytest.lua and SVG file in
JudoShiai/svg-lua/svg/mytest.svg.

Use Inkscape to draw a rectangle. Set its id = myrect. Save it using Save As →
Plain SVG (important!) to mytest.svg. Your file looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->

<svg
 width="210mm"
 height="297mm"
 viewBox="0 0 210 297"
 version="1.1"
 id="svg5"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:svg="http://www.w3.org/2000/svg">
 <defs
 id="defs2" />
 <g
 id="layer1">
 <rect
 style="fill:#d5e5ff;stroke:#000000;stroke-width:0.3;...MORE..."

 id="myrect"
 width="23.7"
 height="18.4"
 x="11.9"
 y="11.5" />
 </g>
</svg>

Style is a long line. Note the id="myrect". Write the following lines to your Lua
file:

local rect = JS.getsvgbyid(LuaScriptDir .. '/svg/mytest.svg', 'myrect')

Function JS.getsvgbyid reads object myrect to local variable rect. You can draw it
on the SVG canvas simply like this:

JS.writesvg(rect)

It will appear at position 11.9, 11.5. Maybe you want to have another one next
to it. First you have to know its dimensions:

local x, y, width, height = JS.getsvggeometry(LuaScriptDir .. '/svg/mytest.svg',
 'myrect')

Now you can draw a copy shifted by width:

JS.writesvg(string.format('<g transform="translate(%d, 0)">', width))
JS.writesvg(rect)
JS.writesvg('</g>')

This way you can make lists just by creating one line that is copied.

string.format replaces %d with the corresponding integer. Why integer since
width is a float? Using floats can be dangerous. More in the next paragraph.

Float values in Lua

A decimal separator is a symbol used to separate the integer part from the
fractional part of a number written in decimal form (e.g., "." in 3.14). Different
countries officially designate different symbols for use as the separator.
Separator can be a dot or a comma. Example:

print(string.format('%f', 3.14))

In many countries this will print 3.14, but in the others 3,14. SVG accepts only
the dot as a decimal separator. To be on the safe side it is better to convert the
float to a string and then replace possible comma with a dot. Function
FloatToStr does that:

function FloatToStr(a)
 local r = tostring(a)
 return r:gsub(',', '.')
end

Now, instead of %f you will use %s for a string. The previous translate line

JS.writesvg(string.format('<g transform="translate(%d, 0)">', width))

changes to

JS.writesvg(string.format('<g transform="translate(%s, 0)">',
 FloatToStr(width))

Page size

The default page size is A4 (210mm x 297mm). You can define your own size
by having a comment on the first line of the Lua file:

-- paper width=300 height=200

It is possible to have many sizes for the same Lua code. Create a base file.
Then include that in the other files:

-- paper width=300 height=200
paper_w = 300
paper_h = 200
require 'mybase'

Use paper_w and paper_h for layout design in mybase.lua.

Multiple pages
SVG has no standard for multiple pages. However, you can draw as many
pages as you wish and send them to a printer that can be a PDF file, too.

Set the total number of pages first:

JS.setpages(3)

Next draw you page based on the current page number:

current_page = JS.getpage()
if current_page == 1 then
 print_first_page()
else
 print_something_else()
end

Page changes when you click the visible SVG page with the left or right mouse
button. In printer dialog you can select the pages as usual.

SQL commands
Example: Print members of category M-90:

local numrows, tbl = JS.sqlrows(
 'select last,first from competitors where category="M-90"')

Numrows tells how many rows tbl has. Tbl looks like this:

{
 1= {
 last= "SCHMIDT",
 first= "Leon",
 },

 2= {
 last= "NEUMANN",
 first= "Maximilian",
 },
 3= {
 last= "CHRISTENSEN",
 first= "Frederik",
 },
}

There are three rows. You can get last name of the second competitor like this:

last_name = tbl['2']['last']

	JudoShiai Lua
	Introduction
	JudoShiai Lua
	Global variables defined by JudoShiai

	Functions defined by JudoShiai
	Example
	SVG + Lua scripts
	Lua embedded in SVG sheets
	Lua file with the default SVG
	Float values in Lua
	Page size
	Multiple pages

	SQL commands

